首页> 外文OA文献 >Weakly-supervised localization of diabetic retinopathy lesions in retinal fundus images
【2h】

Weakly-supervised localization of diabetic retinopathy lesions in retinal fundus images

机译:糖尿病视网膜病变的弱监督定位   视网膜眼底图像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Convolutional neural networks (CNNs) show impressive performance for imageclassification and detection, extending heavily to the medical image domain.Nevertheless, medical experts are sceptical in these predictions as thenonlinear multilayer structure resulting in a classification outcome is notdirectly graspable. Recently, approaches have been shown which help the user tounderstand the discriminative regions within an image which are decisive forthe CNN to conclude to a certain class. Although these approaches could help tobuild trust in the CNNs predictions, they are only slightly shown to work withmedical image data which often poses a challenge as the decision for a classrelies on different lesion areas scattered around the entire image. Using theDiaretDB1 dataset, we show that on retina images different lesion areasfundamental for diabetic retinopathy are detected on an image level with highaccuracy, comparable or exceeding supervised methods. On lesion level, weachieve few false positives with high sensitivity, though, the network issolely trained on image-level labels which do not include information aboutexisting lesions. Classifying between diseased and healthy images, we achievean AUC of 0.954 on the DiaretDB1.
机译:卷积神经网络(CNN)在图像分类和检测方面表现出令人印象深刻的性能,并广泛延伸到医学图像领域。然而,医学专家对这些预测表示怀疑,因为非线性多层结构导致无法直接把握分类结果。近来,已经显示出帮助用户理解图像内的区分区域的方法,这些区域对于CNN得出特定类别至关重要。尽管这些方法可以帮助建立对CNN预测的信任,但是它们仅能显示与医学图像数据配合使用,这通常会带来挑战,因为分类的决策取决于散布在整个图像周围的不同病变区域。使用DiaretDB1数据集,我们显示,在视网膜图像上,可以以高精度,可比或超过监督方法在图像级别检测到糖尿病视网膜病变基础的不同病变区域。在病变级别上,可以以极高的灵敏度实现很少的误报,但是,仅在图像级别的标签上训练网络,而该级别不包含有关现有病变的信息。在病变和健康图像之间进行分类,我们在DiaretDB1上获得了0.954的AUC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号